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Abstract

We rely on the recently established aggregation property of the second and third moments
of returns to construct forward risk-neutral moments extracted from option prices. We show
theoretically that according to standard affine no-arbitrage models, the forward moments
should exhibit a factor structure, while the equity and the variance risk premia should also
be affine functions of the same state variables. In light of this, we show that the factor
extracted either from the forward variance or the forward skewness estimates exhibits strong
predictability for the equity premium, both in-sample and out-of-sample. We also document
that the forward skewness factor provides similar but often stronger predictability than
the forward variance factor, and the combination of the two factors enhances the observed
predictive performance. Finally, we find that the same forward moments factors that are
designed to predict the equity premium, exhibit strong predictive power for the variance
premium as well.

JEL Classification: G10, G11, G12
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1 Introduction

The forward-looking nature of the risk-neutral probability distribution has rendered the

usage of option-implied moments of different maturities extremely popular for forecasting

purposes among researchers. However, a new strand of the literature focuses on the predictive

ability that can be offered by the term structure of forward implied moments rather than

the implied moments themselves. More specifically, Bakshi, Panayotov and Skoulakis (2011)

create measures of forward stock market variance and find that they are jointly successful

in predicting future real activity, as well as stock market and treasury bill returns. Using

a somewhat different specification, Luo and Zhang (2016) confirm the predictive ability of

forward variances for stock market returns.

The contribution of this paper to the forward moments literature is twofold. First, we

show theoretically that forward moments should exhibit predictive power for the equity as

well as the variance premium. This is because under a standard affine no-arbitrage model

forward moments are affine to the same factors driving the overall economy. Second, we

create forward skewness measures and show empirically that, similar to forward variance,

forward skewness exhibits strong predictability for the equity and variance premia. Moreover,

the predictive power of forward skewness is even stronger than that of forward variance when

predicting the equity premium especially at longer horizons.

The reason it is important to investigate the information content of forward moments

on top of implied moments is because they provide, especially during turbulent periods, a

better approximation of investors’ current expectations about different future time periods.

To see this, consider the example of the S&P 500 index forward and implied variance esti-

mates on the 29th September 2008. On that date, the annualized risk-neutral variance was

13.10% for the 3-month horizon, 10.05% for the 6-month horizon, 9.08% for the 9-month

horizon and 8.77% for the 12-month horizon. This means that the level of investors’ per-

ceived variance was highly elevated and that the slope of the implied volatility term structure

was negative, with investors worrying more about short-term rather than long-term market
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movements. However, the respective annualized forward variance estimates provide addi-

tional information. In particular, the forward variance for three-to-six months ahead was

7.01%, for six-to-nine months ahead it was 7.13% and for nine-to-twelve months ahead it

was 7.85%. This means that while investors’ perceived variance risk was the highest for the

first quarter and much lower for the subsequent quarters, it was strictly increasing across

the second, third and fourth quarters ahead. It is therefore evident, that in principle for-

ward moments might contain information about investors’ expectations that cannot be easily

extracted from simple implied moments.

In order to create the forward moments estimates, we exploit the recently established

Aggregation Property of Neuberger (2012). In particular, Neuberger (2012) provides alter-

native definitions of variance and skewness which have the characteristic that the sum of each

moment of log returns across sequential time periods is equal to the respective moment over

the overall time period examined. Most importantly, the only assumption that is required is

that the asset price is a martingale. Furthermore, Kozhan, Neuberger, and Schneider (2013)

provide a method for replicating these alternative definitions of variance and skewness via

a positioning in call and put options.1 Building on these two studies, we show how to use

option prices to obtain not only forward variance but also forward skewness estimates.

Since according to our theoretical framework, the equity premium, the variance premium

and all the forward moments are affine to the same common factors, it is reasonable to

extract the relevant set of factors and use it to predict the equity and variance risk premia.

To do so, we rely on the partial least squares methodology of Kelly and Pruitt (2013, 2015),

which condenses the cross-section of a set of predictors according to its covariance with the

predicted variable. Therefore, unlike the standard principal components method, the partial

least squares technique employed in the paper extracts from the series of the predictive

variables the factors that are more relevant for forecasting purposes.

1The standard definition of variance of log returns does not satisfy the Aggregation Property under the
presence of jumps in the asset price process and hence cannot be replicated exactly by a positioning in call
and put options. For more details the reader can refer to Neuberger (2012) and Bondarenko (2014).
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Empirically, we find that one factor, extracted from the series of either forward variances

or forward skewnesses and designed to predict the 1-month horizon equity premium, exhibits

statistically and economically significant predictive power for future market returns for hori-

zons up to twelve months ahead. In particular, in-sample predictability analysis shows that

a one standard deviation increase in the forward variance factor is associated with an annu-

alized excess monthly (quarterly) return of 11.85% (10.20%), while a one standard deviation

increase in the forward skewness factor is associated with an annualized excess monthly

(quarterly) return of 12.55% (13.34%). The respective R2s for the forward variance factor

are 4.48% and 8.77%, while for the forward skewness factor they are 5.02% and 14.99%.

Furthermore, the results show that the predictability of the two forward moments factors

remains intact after controlling for the simple implied moments or a wide range of alternative

predictors.

The strong predictive power of the forward moments factors is also confirmed in the

out-of-sample analysis. In particular, a predictive model with either of the factors clearly

outperforms the historical average model across most horizons examined. For example,

the forward variance model out-of-sample R2 is 1.93% for monthly returns and 2.30% for

quarterly returns, while the forward skewness model out-of-sample R2 is 0.72% for monthly

returns and 4.08% for quarterly returns. Results also show that the inclusion of the forward

skewness factor to a predictive model that would otherwise include only the forward variance

factor provides additional predictive power for the equity premium. The out-of-sample results

appear to be also economically significant since a market-timing trading strategy that is

based on the predictive power of the forward moments factors offers higher Sharpe ratios and

increased utility (excess certainty equivalent return) to a mean-variance investor who would

otherwise allocate her wealth by considering the recursively estimated historical average.

Finally, we show that the same forward variance and forward skewness factor that is

used for the equity premium predictability is also a very successful predictor of the vari-

ance premium across horizons both in-sample and out-of-sample. This finding supports the
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theoretical framework presented in the paper and rationalizes the usage of proxies of the

variance premium as predictors of the equity premium (see for example, Bollerslev, Tauchen

and Zhou, 2009; Drechsler and Yaron, 2011; Bollerslev, Marrone, Xu and Zho, 2014).

The remainder of the paper is structured as follows. Section 2 presents the theoretical

framework, while Section 3 describes the econometric methodology. Section 4 provides details

regarding the data and the construction of the main variables used in the study. Section 5

discusses the empirical evidence from the equity premium predictability. Section 6 reports

the results from the variance premium predictability. Finally, Section 7 concludes.

2 Theoretical Motivation

This section aims to provide a theoretical motivation of the empirical analysis considered in

this paper. In particular, we show how the forward variance and forward high-order moments

term structure can be used to recover the risk factors driving the equity risk premium.

We first consider the following notations. The one-period ahead excess returns derived

from holding an equity are defined as follows:

rt+1 = pt+1 − pt − rf,t,

where pt is the log price of the equity at time t and rf,t is the log of one-period ahead risk-free

rate. The excess returns over any horizon τ are given by:

rt,t+τ =
τ∑
j=1

rt+j.

Furthermore, we consider an economy driven by K state variables, say Xt, which satis-

fies the following three properties: (i) the joint distribution of rt+1 and Xt+1 belongs to the

family of affine jump-diffusion continuous-time (or discretized) models [see Duffie, Pan, and

Singleton, 2000]; (ii) the risk-free rate rf,t is an affine function of Xt; and (iii) the stochastic
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discount factor is an exponential affine function of Xt+1 and rt+1 [see Gourieroux and Mon-

fort, 2007; Christoffersen et al., 2010]. Feunou et al. (2014) have formalized these properties

to show that this class of models nests a wide array of discrete-time asset-pricing models.

For example, the affine long-run risk models that are based on Epstein–Zin–Weil preferences

fit these properties; see Bansal and Yaron (2004) and Eraker (2008) among others. Under

this class of models, the equity premium over an investment horizon τ can be expressed as

follows:

EPt (τ) = EP [rt,t+τ ] = βa,0 (τ) + βa (τ)>Xt, (1)

where the coefficients βa,0 (τ) and βa (τ) are functions of the underlying model’s parameters;

see Feunou et al. (2014). The estimation of risk–return trade-off equation in (1) is the main

focus of the present paper. In this equation, the coefficient βa (τ) characterizes the returns

that are required by investors to bear the risk associated with variations in Xt. If the risk

factorsXt were observable, then the coefficients βa,0 (τ) and βa (τ) could be estimated directly

via ordinary least squares (OLS). However, Xt is latent and this makes the estimation of

Equation (1) infeasible.

We next show how the risk factors Xt can be revealed using the term structure of risk-

neutral forward moments (cumulants). Before doing so, we begin by recalling some results

from Feunou et al. (2014) that show that in the context of the above mentioned affine models,

the standard risk-neutral moments can be expressed as affine functions of risk factors Xt. In

particular, one can show that the conditional variance of excess returns under risk-neutral

measure, Q, over a horizon τ is an affine function of risk factor Xt :

V arQt (τ) = V arQt [rt,t+τ ] = βvr,0 (τ) + βvr (τ)>Xt, (2)

where the coefficients βvr,0 (τ) and βvr (τ) are functions of the underlying model’s parameters.

Equation (2) indicates that the variance at different maturities display a factor structure with

dimension K. The above results can be generalized for any moment (cumulant) of order n
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of excess returns over a horizon τ, say MQ
t,n (τ) , for n > 2,

MQ
t,n (τ) = βn,0 (τ) + βn,X (τ)>Xt, (3)

where again the coefficients βn,0 (τ) and βn,X (τ) depend on the underlying model’s parame-

ters.

The novelty of the present paper is we use the risk-neutral forward moments (cumulants)

to reveal and measure the risk factors Xt. The main reason of using the risk-neutral forward

moments instead of the standard risk-neutral moments, as in Feunou et al. (2014), is because

the former provide a better approximation of the term structure of uncertainty. In the

following, we focus on the term structure of risk-neutral forward variance and skewness.

Formally, the risk-neutral forward variance between two maturities τ1 and τ2 is defined

as follows:

V arQt (τ1, τ2) = V arQt [rt+τ1,t+τ2 ] .

Now, recall that Neuberger (2012) postulates that any real-valued function g of an adapted

process Y has the aggregate property if for any t ≤ τ1 ≤ τ2, we have

Et [g (Xτ2 −Xt)] = Et [g (Xτ2 −Xτ1)] + Et [g (Xτ1 −Xt)] . (4)

Assuming that the (forward) asset price P is a martingale, Neuberger (2012) and Kozhan,

Neuberger, and Shneider (2013) define the following log and entropy variances, respectively,

as:

GV
t,τ2

= Et

[
Fτ2
Ft
− 1− ln(

Fτ2
Ft

)

]
and GE

t,τ2
= Et

[
2
Fτ2
Ft

ln(
Fτ2
Ft

)− Fτ2
Ft

+ 1

]
,

where the functions inside the brackets have the aggregation property and converge to the

second moment of returns. Observe that GV
t,τ2

can be regarded as the implied variance of

stock returns, i.e. GV
t,τ2

= IVt,τ2 . Similarly, Neuberger (2012) and Kozhan et al. (2013) define
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the skewness as follows:

GS
t,τ2

= Et

[
6
Fτ2
Ft

ln(
Fτ2
Ft

)− 2
Fτ2
Ft

+ ln(
Fτ2
Ft

) + 2

]
,

where the function inside the brackets has the aggregation property and converge to the

third moment of returns. Notice that GS
t,τ2

can be written as the difference between the two

previously described variance measures. Consequently, GS
t,τ2

can be regarded as the implied

third moment of stock returns, i.e. GS
t,τ2

= TMt,τ2 .

Both implied variance and skewness are unbiased estimates of the true variance and

skewness in the absence of any risk premia. Thus, from Equation (4), we can write, for any

t ≤ τ1 ≤ τ2,

IVt,τ2 = IVt,τ1 + Et
[
GV
τ1,τ2

]
, (5)

TMt,τ2 = TMt,τ1 + Et
[
GS
τ1,τ2

]
. (6)

Rearranging equations (5)-(6) we obtain:

FVt,τ1,τ2 = Et
[
GV
τ1,τ2

]
= IVt,τ2 − IVt,τ1 , (7)

FSt,τ1,τ2 = Et
[
GS
τ1,τ2

]
= TMt,τ2 − TMt,τ1 , (8)

where FVt,τ1,τ2 and FSt,τ1,τ2 are the time zero forward variance and skewness for the period

u to t implied by the prices of OTM options at time zero. Consequently, from equations (2)

and (7), we get:

FVt,τ1,τ2 = βvr,0 (τ1, τ2) + βvr (τ1, τ2)
>Xt, (9)

where βvr,0 (τ1, τ2) = βvr,0 (τ2) − βvr,0 (τ1) and βvr (τ1, τ2) = βvr (τ2) − βvr,0 (τ1) . Similarly,

from equations (3) and (8), we get:

FSt,τ1,τ2 = βtm,0 (τ1, τ2) + βtm (τ1, τ2)
>Xt, (10)
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where βtm,0 (τ1, τ2) = βtm,0 (τ2)− βtm,0 (τ1) and βtm (τ1, τ2) = βtm (τ2)− βtm (τ1) .

Now, observe that the expressions of the risk-neutral forward variance and skewness

(third moment) in equations (9) and (10) can be used to reveal the risk factors Xt, which

in turn can be used to estimate the risk–return trade-off Equation in (1). This can be done

with help of model-free measures of risk-neutral forward variance and skewness that are

available directly from option prices. However, the measured risk-neutral forward variance

and skewness differs from the true values. In particular, we have

FVt,τ1,τ2 = F̃ V t,τ1,τ2 + vt (τ1, τ2) and FSt,τ1,τ2 = F̃St,τ1,τ2 + st (τ1, τ2) , (11)

where the measurement errors vt (τ1, τ2) and st (τ1, τ2) are assumed to be uncorrelated with

the model-free measures of risk-neutral forward variance and skewness F̃ V t,τ1,τ2 and F̃St,τ1,τ2 ,

respectively. We rely on the nonparametric approach of Bakshi and Madan (2000) to measure

F̃ V t,τ1,τ2 and F̃St,τ1,τ2 .

Next, using equations (9)-(10) and stacking the measurements in Equation (11) across

horizons τ = τ1, τ2, ..., τq, we obtain:

F̃ V t + vt = B0,vr +BvrXt,

F̃ St + st = B0,tm +BtmXt,

where the q× 1 vectors B0,vr and B0,tm stack the constants βvr,0 (τ1, τ2) and βtm,0 (τ1, τ2) , re-

spectively, and the q×K matrices Bvr and Btm stack the corresponding coefficients βvr (τ1, τ2)

and βtm (τ1, τ2) . We typically have more observations along the term structure than the un-

derlying factors (i.e., q > K). We can then write,

Xt = −B̄vrB0,vr + B̄vrF̃ V t + B̄vrvt, (12)

Xt = −B̄tmB0,tm + B̄tmF̃St + B̄tmst, (13)
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where the K × q matrices B̄vr =
(
B>vrBvr

)−1
B>vr and B̄tm =

(
B>tmBtm

)−1
B>tm are the left

inverse of Bvr and Btm, respectively. Hence, equations (12)-(13) show that one can use

the forward variance and skewness term structures separately as a signal for the underlying

risk factors. Alternatively, we can also combine the forward variance and skewness term

structures to extract the factors Xt. In the next section, we use the Partial Least Squares

(PLS) methodology from Kelly and Pruitt (2013, 2015) to extract the factor(s) Xt using F̃ V

and F̃S. Once the risk factors Xt are extracted from model-free measures of risk-neutral

forward variance and skewness, they will be used to estimate our Equation of interest in (1).

3 Econometric Methodology

In this paper, we rely on the partial least squares (PLS) methodology of Kelly and Pruitt

(2013, 2015) to extract one factor X fusing F̃ V (or F̃S). The main characteristic of the PLS

method is that it extracts the factor structure of a set of predictive variables according to

their covariance with the forecasted variable. In other words, using PLS we can identify a

factor that drives the set of the predictive variables but is also relevant for forecasting the

target variable.

To implement PLS, we first run N time-series regressions:

qi,t = φi,0 + φixr
e
t,t+1 + εi,t, (14)

where qi,t is each of the forward moments and xret,t+1 is the subsequent one-month ahead

excess market return. Intuitively, the excess market return is used as a proxy for the un-

observable forward moments factor, and φi is the loading of each forward moment to that

factor. As a second step, we run T cross-sectional regressions:

qi,t = ϕt +Xtφ̂i + εi,t, (15)

9



where φ̂i is the estimated coefficient from the first step for each of the forward moments.

Intuitively, by regressing the forward moments at each time period on the corresponding

factor loadings stemming from the first-step regressions, we can estimate the time-series of

the forward moments factor (F̃ V or F̃S).

Notice that we utilize the one-month ahead excess market return as a proxy for the true

forward moments factors. However, in the subsequent empirical analysis we show that the

factors estimated through this procedure exhibit predictive power for long-horizon excess

market returns and excess variance as well.

4 Data and Variables

This section provides details regarding the estimation of the main and alternative predictive

variables used and the study, as well as summary statistics.

4.1 Options data and forward moments

To create a term structure of aggregate market forward moments, we use S&P 500 index

options data from OptionMetrics. More specifically, we utilize the volatility surface file that

provides implied volatilities for a given range of standardized deltas and maturities. The

interpolated implied volatility surface is estimated based on a kernel smoothing algorithm

using call and put options of different strike prices and maturities. We discard in-the-money

options, i.e. options with an absolute value of delta higher than 0.5. Our sample period is

1996:01-2015:08 and the monthly time-series of forward moments is estimated using data on

the last-but-one trading day of each month.2

On a given day, we estimate implied variance and skewness for three-, six-, nine- and

twelve months ahead. Neuberger (2012) and Kozhan, Neuberger and Schneider (2013) show

2The one-day lag rule is used to account for the fact that, until the 4th March 2008, the data provided by
OptionMetrics stem from closing prices that are recorded two minutes after the closure of the stock market
(Battalio and Schultz, 2006). Moreover, it gives real-time investors the necessary time to analyze the options
data.
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that Equations (2)-(2) can be replicated exactly by a positioning in OTM call and puts

options following the results of Bakshi and Madan (2000) and Carr and Madan (2001):

IV T
t =

2

BT
t

[∫ FT
t

0

P T
t [K]

K2
dK +

∫ ∞
FT
t

CT
t [K]

K2
dK

]
, (16)

ISTt =
6

BT
t

[∫ ∞
FT
t

K − F T
t

K2F T
t

CT
t [K] dK −

∫ FT
t

0

F T
t −K
K2F T

t

P T
t [K] dK

]
, (17)

where BT
t = e−r(T−t) is the price of a risk-free bond, F T

t is the forward S&P 500 index level

at time t, and P T
t [K] and CT

t [K] are the prices of a put and a call option respectively

with strike price K and time to maturity T − t. The main issue regarding the usage of

the above formulae is that they require a continuum of option prices while the available

data is only discrete. Therefore, for each cross-section of implied volatilities we interpolate

into the range of available moneyness levels using a smoothing cubic spline with smoothing

parameter of 0.99 and extrapolate outside this range using the respective boundary values

(see also Buss and Vilkov, 2012, and DeMiguel, Plyakha, Uppal and Vilkov, 2013). This

way, we obtain a set of 1000 implied volatilities that cover the moneyness range from 0.0001

to 3. Finally, these implied volatilities are transformed into option prices and the trapezoidal

approximation is used for the computation of the integrals in Equations (16) and (17).

Once we have the estimates of constant maturity implied moments, we use Equations

(7)-(8) to create forward moments for three-to-six, six-to-nine and nine-to-twelve months

ahead. Then, using the PLS method described in the previous section and the estimated

forward moments we extract one factor from the forward variance vector and one factor from

the forward skewness vector. Moreover, we keep the three-month ahead implied variance and

skewness and use them as control variables in the subsequent empirical analysis.
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4.2 Other variables

The remainder of the predictor variables include the aggregate dividend-price ratio (d-p,

Fama and French, 1988, and Campbell and Shiller, 1988a,b), the market dividend-payout

ratio (d-e, Campbell and Shiller, 1988a and Lamont, 1998), the yield term spread (TERM,

Campbell, 1987 and Fama and French, 1989), the default spread (DEF, Keim and Stam-

baugh, 1986 and Fama and French, 1989), the relative short-term risk-free rate (RREL,

Campbell, 1991), the stock market variance (SVAR, Guo, 2006) and the tail risk (TAIL,

Kelly and Jiang, 2014). d-p is the difference between the log aggregate annual dividends

and the log level of the S&P 500 index, while d-e is the difference between the log aggregate

annual dividends and the log aggregate annual earnings. TERM is the difference between

the 10-year bond yield and the 1-year bond yield, while DEF is the difference between BAA

and AAA corporate bonds yields from Moody’s. RREL is the difference between the 3-

month t-bill rate and its moving average over the preceding twelve months. SVAR is the

sum of squared daily returns of the S&P 500 index. Finally, TAIL captures the probability

of extreme negative market returns and is constructed by applying Hill’s (1975) estimator

to the whole NYSE/AMEX/NASDAQ cross-section (share codes 10 and 11) of daily returns

within a given month. Data on monthly market prices, dividends, and earnings are obtained

from Robert Shiller’s website. All interest rate data are obtained from the FRED database

of the Federal Reserve Bank of St. Louis. The stock market variance data come from Amit

Goyal’s website.

As a proxy for the equity premium we use CRSP value-weighted index excess market

returns. Excess returns are estimated by subtracting from the monthly log-return the (log

of) the one-month Treasury bill rate obtained from Kenneth French’s website. Continuously

compounded excess market returns for longer horizons are created by taking cumulative

sums of monthly excess market returns.
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4.3 Summary statistics

Table 1 provides descriptive statistics for the predictive variables used in the study. FV

exhibits positive skewness and high excess kurtosis, while FS exhibits slightly negative skew-

ness and even higher kurtosis. Both variables exhibit modest first-order autocorrelation

coefficients (0.64 and 0.53 respectively). IV and IS, on the other hand, exhibit more extreme

higher moments and are also more persistent with autocorrelation coefficients of 0.86 and

0.75 respectively. With the exception of SVAR and TAIL, the remainder of the predictors

are highly persistent, with autocorrelation coefficients that are close to unity.

Figure 1 plots the estimated forward variance and forward skewness factors together

with the implied variance and implied skewness. The top panels show that both FV and

FS exhibit several spikes in the period of the Asian financial crisis (1997:07 to 1997:12)

and the Russian default (1998:08 to 1998:09), while FS exhibits also a big spike in 2000:02

just before the all-time high level of the NASDAQ index. Both factors remain relatively

stable in the subsequent years and become again very volatile in the period of the Lehman

Brothers’ collapse (2008:09 to 2009:03) and the subsequent European sovereign debt crisis.

For example, FS exhibits a big spike between 2010:05 and 2010:07 which corresponds to

the first bailout agreement for Greece. In general, it can be seen that FV and FS exhibit

similarities across time but their peaks and downs can differ in both timing and magnitude.

The bottom panels show that IV and IS exhibit very similar but opposite patterns. More

importantly, we can observe that the pattern of IV is quite different from that of FV and

this is also true for IS and FS. The above relations are also apparent in Table 2, which

presents the correlation coefficients among the predictive variables. As expected, FV and

FS are positively correlated (0.62), while IV and IS are very highly negatively correlated (-

0.96).3 The correlation between FV and IV is 0.10, while the respective correlation between

FS and IS is only 0.05. It is, therefore, apparent that the information embedded in our

3Recall that our skewness measure is the third non-central moment and is not scaled by variance. The
respective correlation coefficient presented in Neuberger (2012) is -0.95.
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forward moments factors is very different from that contained in the implied moments. FV

and FS exhibit also quite low correlations with the rest of the predictors, the highest being

the correlation between FS and SVAR (-0.26).

5 Equity Premium Predictability

5.1 In-sample analysis

We gauge the predictive power of the estimated forward moments factors, by running

multiple-horizon regressions of excess stock market returns of the following form:

xret,t+h = αh + β
′

hzt + εt,t+h, (18)

where xret,t+h =
(
1200
h

) [
xret+1 + xret+2 + ...+ xret+h

]
is the annualized h-month excess return

of the CRSP value-weighted index and zt is the vector of predictors. The regression analysis

covers the period 1996:01-2015:08 and for each forecasting horizon we lose h observations.

To avoid spurious statistical inference stemming from overlapping observations, we employ

Newey and West (1987) as well as Hodrick (1992) standard errors with lag length equal to

the forecasting horizon. The beta coefficients reported in the subsequent tables have been

scaled and can be interpreted as the percentage annualized excess market return caused by

a one standard deviation increase in each regressor.

Table 3 reports the results of 1-, 2-, 3-, 6-, 9-, and 12-month horizon univariate predictive

regressions for the forward variance factor and the forward skewness factor. It can be seen

that both FV and FS are highly significant until the 6-month horizon, while FS continues

to be significant at either the 5% or the 1% level until the 12-month horizon.4 Moreover,

the slope coefficients are economically significant: for example, a one standard deviation

4Recall that, despite predicting the equity premium at different horizons, the forward moments factors
that are used throughout the paper are the same and are designed to predict the 1-month ahead equity
premium.
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increase in FV predicts an annualized excess monthly return of 11.85%, while a one standard

deviation increase in FS predicts an annualized excess monthly return of 12.55%. The

economic significance gradually tapers off for horizons longer than three months ahead. The

R2 values show a similar patter. In particular, the 1-month ahead R2 of FV is a sizeable

4.48% that grows to 8.77% for the 3-month horizon and then gradually decreases. Similarly,

the 1-month ahead R2 of FS is 5.02% and grows to 14.99% for the 3-month horizon before

it starts decreasing.

Tables 4 and 5 assess the robustness of the forecasting power of FV and FS to the presence

of IV, IS and our set of alternative economic predictors. Table 4 shows that FV remains

significant at either the 5% or 1% level in all cases when horizons up to six months ahead

are examined. From the rest of the variables considered, only d-p and RREL exhibit some

modest predictability, while IS becomes significant at longer horizons but only when Newey-

West standard errors are considered. Similarly, Table 5 demonstrates that, consistent with

the univariate analysis, FS remains significant at either the 5% or 1% level in all but one

case (the bivariate model with d-p at the 12-month horizon when Hodrick standard errors

are considered) across all horizons examined. As in the case of FV, we find some evidence

of predictability for d-p and RREL, while IV and IS turn occasionally significant but only

when Newey-West standard errors are employed.

Overall, the results of this section suggest that the both the forward variance and the for-

ward skewness factor exhibit statistically and economically significant predictability for the

equity premium with quite high coefficients of determination. Moreover, the predictability

of forward skewness appears to be relatively stronger than that of forward variance espe-

cially for horizons longer than six months ahead. Finally, the predictability of the forward

moments remains intact when controlling for the implied variance, implied skewness and a

set of alternative economic predictors.
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5.2 Out-of-sample analysis

While in-sample (IS) predictability tests exhibit higher statistical power (Inoue and Kilian,

2004), an examination of the out-of-sample (OS) predictability of the forward moments

factors is of particular importance for several reasons. First, OS predictability tests avoid

potential over-fitting problems (Goyal and Welch, 2003, 2008). Second, they employ only

data that are available to investors in real-time when making their forecasts. Third, they are

not affected by the small-sample biases of the PLS method, discussed in Kelly and Pruitt

(2013). Therefore, in this Section we evaluate the OS performance of the forward moments

factors for 1-, 2-, 3-, 6-, 9-, and 12-month horizons.

Following Goyal and Welch (2003, 2008), Campbell and Thompson (2008), Rapach,

Strauss and Zhou (2010), Kelly and Pruitt (2013) and Huang, Jiang, Tu and Zhou (2015),

among others, we estimate the model in Equation (18) recursively using observations 1, ..., s.

Next, based on the estimated parameters, we form for each time period s = s0, ..., T − h,

with T being the total number of months in our sample period and h the forecasting horizon,

the OS forecasts for the expected excess market return using the concurrent values of the

predictive variables examined:

x̂res,s+h = α̂s + β̂
′

szs. (19)

This way we create a series of TOS OS forecasts starting from 2000:01. It is important to note

that when the predictive variable is one of the forward moments factors, the PLS method

employs only data that are known at time s. The OS forecasts of each predictive model are

compared to a series of recursively estimated historical averages, which correspond to OS

forecasts of a restricted model with only a constant as a regressor. The evaluation of the OS

predictive performance is based on three measures.

The first measure is the OS R2, denoted by R2
OS, which takes the form:

R2
OS = 1− MSEU

MSER
, (20)
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where MSEU = 1
TOS

∑T−h
s=s0

(
xres,s+h − x̂r

e
s,s+h

)2
is the mean squared error of the unrestricted

model and MSER = 1
TOS

∑T−h
s=s0

(
xres,s+h − x̃r

e
s,s+h

)2
is the mean squared error of the re-

stricted model, with x̃res,s+h being the recursively estimated historical average. R2
OS takes

positive values whenever the unrestricted model outperforms the restricted model in terms

of predictive power (i.e. MSEU < MSER).

The second measure of OS performance is the MSE-F test from McCracken (2007):

MSE − F = (TOS − h+ 1)
MSER −MSEU

MSEU
, (21)

which tests the null hypothesis that the restricted model’s MSE is less than or equal to

the unrestricted model’s MSE. McCracken (2007) shows that the F-statistic follows a non-

standard normal distribution and provides appropriate critical values using Monte Carlo

simulations.

Finally, the third measure is the encompassing test of Clark and McCracken (2001):

ENC −NEW =
(TOS − h+ 1)

TOS
(22)∑T−h

s=s0

[(
xres,s+h − x̂r

e
s,s+h

)2 − (xres,s+h − x̂res,s+h) (xres,s+h − x̃res,s+h)]
MSEU

,

which examines whether the restricted model encompasses the unrestricted model, mean-

ing that the unrestricted model does not improve the forecasting ability of the restricted

model. Appropriate critical values based on Monte Carlo simulations are also provided by

the authors.

Results for the predictive models with the two forward moments factors are presented in

Panel A of Table 6, while results for the predictive models with the alternative predictors

are presented in Panel B of Table 6. It can be seen that FV exhibits positive and quite large

R2
OS values for horizons up to six months ahead, ranging from 0.45% to 2.30%. Moreover,

the outperformance of the unrestricted model based on FV is statistically significant at the
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5% level in all but one case (MSE-F statistic for the 6-month horizon where the significance

is at the 10% level) when considering those horizons. In a similar vein, FS exhibits positive

and even larger R2
OS values, ranging from 0.72% to 4.08%, for all horizons up to nine months

ahead. The outperformance of the FS model compared to the historical average model for

those horizons is also statistically significant at the 5% level in all but one case (MSE-F

statistic for the 1-month horizon where the significance is at the 10% level). The above

results from univariate OS predictability tests are in line with the IS results presented in

the previous section, since both forward moments factors exhibit significant equity premium

predictability, with FS having slightly stronger power than FV.

Two additional observations are in order. First, a bivariate model that includes both

FV and FS exhibits stronger predictability across all horizons than a model that takes into

consideration only FV. More specifically, the bivariate model exhibits R2
OSs which range from

1.51% to 7.12% when considering horizons up to nine months ahead, while the respective

null hypotheses from the MSE-F and the ENC-NEW tests are rejected even more decisively.

The last rows of Panel A compare the predictive ability of the bivariate model with that of

the FV model (instead of the historical average model) and show a clear and statistically

significant outperformance of the model that includes FS on top of FV. Second, Panel B

shows that the OS predictability of the forward moments factors is much better than that

of the simple implied moments or the alternative equity premium predictors. In particular,

the only alternative variables that exhibit positive R2
OSs are IS, which shows some modest

predictability only for the 6- and 9-month horizons, and d-p which shows strong predictability

when considering long horizons of nine and twelve months ahead.

Overall, the results from out-of-sample predictability confirm that the forward moments

factors exhibit strong predictive performance across several horizons. This performance does

not seem to be an artifact of econometric biases, can be exploited even by using only real-

time data and is much stronger than what is offered by simple implied moments or other

traditional predictors. Finally, the inclusion of the forward skewness factor to a predictive
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model that already utilizes the forward variance factor appears to be beneficial for predictive

purposes.

5.3 Asset allocation

In this section, we assess the economic significance of the documented out-of-sample pre-

dictability of the forward moments factors. To this end, following Campbell and Thompson

(2008), Ferreira and Santa-Clara (2011), Huang, Jiang, Tu and Zhou (2015) and Rapach,

Ringgenberg and Zhou (2016), among others, we create a market-timing strategy that relies

on the 1-month horizon OS forecasting power of the estimated factors and the alternative

predictors.

More specifically, we consider a mean-variance investor who allocates her wealth every

month between the market index and the risk-free asset. At the end of each month s, the

investor makes a forecast for the 1-month ahead excess market return5 using the procedure

described in the previous section. Moreover, she forms an estimate of the market returns

variance using all available data up to time s. Based on these estimates, the investor forms

her portfolio weights as follows:

ωs =
x̂res,s+1

γσ̂2
s,s+1

, (23)

where x̂res,s+1 is the OS forecast of the 1-month ahead excess stock market return, γ is the risk

aversion coefficient, which is set as equal to three, and σ̂2
s,s+1 is the estimate of the variance of

the stock market return computed as the historical variance for the period 1, ..., s. Following

Campbell and Thompson (2008), we impose realistic leverage values by constraining the

portfolio weight on the market index ωs to lie between 0 and 1.5.

5In this section, the term return refers to simple return and not to logarithmic return.
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The realized return from the above market-timing strategy can be represented by:

Rp;s,s+1 = ωsRm;s,s+1 + (1− ωs)Rf ;s,s+1, (24)

where Rm;s,s+1 denotes the simple market return and Rf ;s,s+1 denotes the return of the riskless

asset. Therefore, iterating this procedure forward, we create a series of realized portfolio

returns based on the OS forecasting power of each forecasting model and we compare each

strategy with a strategy based on the recursively estimated historical average (HAV).

For each trading strategy, we estimate the mean portfolio return, the standard deviation,

and its Sharpe ratio. Moreover, since the Sharpe ratio weights equally the mean and volatility

of the portfolio returns, we compute a certainty equivalent return (∆CER) in excess of the

HAV strategy:

∆CER = E (Rp;s,s+1)− E
(
R̄p;s,s+1

)
+
γ

2

[
V ar

(
R̄p;s,s+1

)
− V ar (Rp;s,s+1)

]
, (25)

where γ is the risk aversion coefficient, Rp;s,t+1 is the portfolio return of the predictive

regression model strategy and R̄p;s,t+1 is the portfolio return of the HAV strategy. ∆CER

essentially represents the change in the investor’s utility resulting from her choice to follow

the predictive regression strategy instead of the HAV strategy. It can also be interpreted

as the annual “fee”that an investor is willing to pay to invest in the predictive regression

strategy instead of investing in the HAV strategy. All measures are in annualized terms.

The results from the asset allocation exercise are reported in Table 7. The trading

strategy that utilizes FV exhibits a very similar volatility to the HAV strategy (12.12%

versus 12.16%) but much higher average return (3.94% versus 1.25%). This translates to

a Sharpe ratio of 0.32, compared to 0.10 provided by the HAV strategy, and a positive

∆CER of 2.70%, which shows that the utility provided by the FV strategy is significantly

higher than the utility provided by the strategy associated with the recursively estimated

historical average. The results for the FS strategy are similar to those for the FV strategy,
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albeit slightly weaker. In particular, the strategy associated with FS exhibits a volatility of

13.67% and an average return of 2.83%, with these values generating a Sharpe ratio of 0.21

and a ∆CER of 0.99%. It is important to note that while, similar to the 1-month ahead

OS predictability results, the FS strategy performs slightly worse than the FV strategy, the

utilization of both variables into the predictive model leads to a strategy that exhibits better

performance than the FV strategy. In particular, a strategy that relies on both FV and FS

has a volatility of 12.18% and an average return of 4.94%. These values generate a Sharpe

ratio of 0.41 (four times higher than the HAV strategy Sharpe ratio), and a ∆CER of 3.68%.

Turning to the rest of the predictors, some of them exhibit good strategy performance despite

their overall bad 1-month ahead OS predictability. More specifically, d-p, d-e and RREL

exhibit high Sharpe ratios of 0.43, 0.33 and 0.35, and high ∆CERs of 3.84%, 2.81% and

2.95% respectively. TERM and DEF strategies also perform better than the HAV strategy

with Sharpe ratios of 0.12 and 0.13, and positive ∆CERs of 0.30 and 0.59 accordingly. On

the other hand, the two implied moments and the rest of the predictors do not outperform

the naive HAV strategy.

Overall, even though the forward moments factors do not exhibit their highest OS pre-

dictability at the 1-month horizon, this section shows that a trading strategy that relies on

the 1-month ahead predictive power of either the forward variance or the forward skewness

factor outperforms by far a similar strategy that utilizes the recursively estimated histor-

ical average. Moreover, a strategy that relies on both forward moments factors provides

even better performance and is outperformed only by the strategy that uses the aggregate

dividend-price ratio.

6 Variance Premium Predictability

A series of recent papers, such as Bollerslev, Tauchen and Zhou (2009), Drechsler and Yaron

(2011) and Bollerslev, Marrone, Xu and Zho (2014) investigate the predictive power of the
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variance premium for future market returns. In fact, Feunou et al. (2014) show that within

the framework provided in Section 2, the variance premium over an investment horizon,

V P (t, τ), should be an affine function of the same state variables, Xt, that drive the equity

premium:

V P (t, τ) = EQ [σ2
t,t+τ

]
− EP [σ2

t,t+τ

]
= βv,0 (τ) + βv (τ)>Xt. (26)

Therefore, in this section we investigate whether the forward moments factors that were

used in the previous sections and were designed to predict the equity premium, exhibit

significant forecasting power for the variance premium as well. Since the true variance

premium is unobservable we measure the ex post excess variance of market returns:

xvet,t+τ = EQ [σ2
t,t+τ

]
− σ2

t,t+τ , (27)

where σ2
t+τ =

∑τ
j=1 V art

[
xret+j

]
. For a given horizon, excess variance is estimated as the

difference between the implied variance extracted from S&P 500 index option prices and the

S&P 500 index realized variance of the respective horizon. Realized variance data come from

Hao Zhou’s website.

Similarly to Sections 5.1 and 5.2, we focus on 1-, 2-, 3-, 6-, 9-, and 12-month horizon

predictive regressions. Results from in-sample univariate predictability tests are reported

in Panel A of Table 8, while results from out-of-sample univariate predictability tests are

presented in Panel B of Table 8. Panel A shows that, similarly to the case of the equity

premium, FV is a strong predictor of the variance premium as well. In particular, it is always

significant at either the 5% or the 1% level when considering horizons up to six months ahead,

while it continues to be significant at longer horizons when the Hodrick standard errors

are considered.6 A similar significance, albeit slightly lower for short horizons and slightly

6The reason Hodrick standard errors exhibit such a strong significance is due to the nature of the
predicted variable. In particular, the 1-month ahead variance premium which is used for the computation of
the Hodrick standard errors across horizons, is much smaller in magnitude than the 1-month ahead equity
premium. Therefore, even if the regression coefficient is also relatively smaller, the resulting t-statistic ends
up being extremely high. For more details about the methodology the reader can refer to Hodrick (1992)
and Ang and Bekaert (2007).
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higher for longer horizons, is also apparent for FS. Moreover, for both factors the regression

coefficients are economically significant. For example, a one standard deviation increase in

FV forecasts an annualized monthly excess variance of 1.20%, while a one standard deviation

increase in FS forecasts an annualized monthly excess variance of 0.93%. The R2s are quite

high taking their maximum values at the 1-month horizon, with 8.39% for FV and 5.00%

for FS, and gradually tappering off as the horizon increases.

Panel B shows that the forward moments factors are strong predictors of the variance

premium also out-of-sample. More specifically, the R2
OS values are positive in all but one

case (12-month horizon for FV), with values ranging from -0.18% to 6.18% for FV and from

1.64% to 5.85% for FS. Moreover, the outperformance of the two forward moments models

compared to the restricted (historical average) model is always significant at the 5% level

when considering horizons up to nine months ahead, irrespective of the statistic examined.

In general, the predictability of FV appears stronger than that of FS for horizons up to six

months ahead, while the opposite is true for longer horizons. This result is in line with those

of Panel A.

Summarizing, this section provides empirical evidence showing that the same forward

variance and skewness factors that are designed to predict the 1-month ahead equity premium

are also strong predictors of the variance premium at various horizons. This finding supports

the theoretical framework according to which both risk premia are affine functions of the

same risk factors and rationalizes the usage of variance premium proxies as predictors for

the equity premium.

7 Conclusion

We rely on the recently established aggregation property of the second and third moments

of returns to construct forward risk-neutral moments extracted from option prices. We show

theoretically that according to standard affine no-arbitrage models, the forward moments
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should exhibit a factor structure, while the equity and the variance risk premia should also

be affine functions of the same state variables. In light of this, we use a partial least squares

technique to extract the factor that maximizes the covariance between the forward moments

and the equity premium. We show empirically that the factor extracted either from the for-

ward variance or the forward skewness estimates exhibits strong predictability for the equity

premium, both in-sample and out-of-sample. Moreover, it is robust to and outperforms in

terms of predictive power simple measures of risk-neutral variance and skewness as well as

a wide series of traditional predictors. We also document that the forward skewness factor

provides similar but often stronger predictability than the forward variance factor and the

combination of the two factors enhances the observed predictive performance. Finally, we

find that the same forward moments factors that are designed to predict the equity pre-

mium, exhibit strong predictive power for the variance premium as well. Overall, this paper

provides a new approach for capturing the information embedded in the option prices of

different maturities and highlights the important predictive power of forward risk-neutral

moments, and especially skewness, for the equity and variance premia.
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Figure 1: Forward moments factors and implied moments

This figure plots the monthly time series of the forward variance factor, forward skewness factor, implied

variance and implied skewness for the period 1996:01-2015:08.
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Table 1: Descriptive statistics

FV FS IV IS d-p d-e TERM DEF RREL SVAR TAIL
Mean -0.25 -0.04 0.05 -0.01 -4.03 -0.88 0.01 0.01 -0.00 0.00 0.42
Median -0.24 -0.03 0.04 -0.00 -4.02 -1.01 0.02 0.01 -0.00 0.00 0.42
Maximum 1.09 1.01 0.26 -0.00 -3.32 1.38 0.03 0.03 0.01 0.06 0.51
Minimum -0.86 -1.41 0.01 -0.06 -4.50 -1.24 -0.00 0.01 -0.03 0.00 0.29
St. Dev. 0.22 0.21 0.04 0.01 0.22 0.46 0.01 0.00 0.01 0.01 0.04
Skewness 1.18 -0.14 2.80 -4.55 0.09 3.21 -0.12 2.97 -0.96 6.27 -0.47
Kurtosis 9.74 17.05 14.22 30.46 3.78 14.06 1.70 13.94 4.39 54.92 3.41
ρ(1) 0.64 0.53 0.86 0.75 0.98 0.98 0.98 0.96 0.97 0.70 0.55

This table reports descriptive statistics of the forecasting variables used in the study. The forecasting
variables are the forward variance factor (FV), forward skewness factor (FS), implied variance (IV),
implied skewness (IS), dividend-price ratio (d-p), dividend payout ratio (d-e), yield term spread (TERM),
default spread (DEF), relative short-term risk-free rate (RREL), stock market variance (SVAR) and tail
risk (TAIL) (Panel B). The sample period is 1996:01-2015:08. ρ(1) is the first-order autocorrelation
coefficient.
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Table 2: Correlation coefficients

FV FS IV IS d-p d-e TERM DEF RREL SVAR TAIL
FV 1.00
FS 0.62 1.00
IV 0.10 -0.03 1.00
IS -0.09 0.05 -0.96 1.00
d-p 0.07 0.18 0.26 -0.33 1.00
d-e 0.13 0.11 0.58 -0.50 0.47 1.00
TERM -0.12 0.02 0.14 -0.13 0.40 0.32 1.00
DEF -0.04 -0.03 0.69 -0.68 0.60 0.74 0.33 1.00
RREL -0.03 0.02 -0.44 0.35 -0.16 -0.44 -0.32 -0.41 1.00
SVAR -0.01 -0.26 0.83 -0.86 0.29 0.38 0.09 0.59 -0.34 1.00
TAIL 0.10 0.05 -0.44 0.44 -0.03 -0.10 0.02 -0.30 0.01 -0.44 1.00

This table reports correlation coefficients of the forecasting variables used in the study. The forecast-
ing variables are the forward variance factor (FV), forward skewness factor (FS), implied variance
(IV), implied skewness (IS), dividend-price ratio (d-p), dividend payout ratio (d-e), yield term spread
(TERM), default spread (DEF), relative short-term risk-free rate (RREL), stock market variance
(SVAR) and tail risk (TAIL). The sample period is 1996:01-2015:08.
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Table 3: Forward moments predictability

Horizon 1-month 2-month 3-month 6-month 9-month 12-month
FV 11.85 10.52 10.20 6.14 4.04 3.35

( 3.20)*** ( 3.56)*** ( 4.04)*** ( 2.91)*** ( 1.91)* ( 1.63)
[ 2.63]*** [ 2.96]*** [ 3.40]*** [ 2.46]** [ 1.82]* [ 1.42]

R2 (%) 4.48 6.35 8.77 5.67 3.56 3.14
FS 12.55 12.93 13.34 8.47 5.71 4.38

( 3.19)*** ( 4.73)*** ( 5.68)*** ( 5.63)*** ( 3.12)*** ( 2.96)***
[ 2.21]** [ 2.87]*** [ 3.51]*** [ 3.36]*** [ 2.94]*** [ 2.49]**

R2 (%) 5.02 9.59 14.99 10.81 7.09 5.37

This table reports the in-sample results for univariate predictive regressions of the
CRSP value-weighted index excess return on the forward variance factor (FV) and for-
ward skewness factor (FS). The sample period is 1996:01-2015:08. Reported coefficients
indicate the percentage annualized excess return resulting from a one standard devia-
tion increase in each predictor variable. Newey and West (1987) and Hodrick (1992)
t-statistics with lag length equal to the forecasting horizon are reported in parentheses
and square brackets respectively. ***, ** and * denote significance at the 1%, 5% and
10% levels.

32



T
ab

le
4:

F
or

w
ar

d
va

ri
an

ce
p

re
d

ic
ta

b
il

it
y

co
n
tr

ol
li

n
g

fo
r

ot
h

er
p

re
d
ic

to
rs

F
V

Z
R

2
(%

)
F
V

Z
R

2
(%

)
F
V

Z
R

2
(%

)
F
V

Z
R

2
(%

)
F
V

Z
R

2
(%

)
F
V

Z
R

2
(%

)
H
o
ri
zo

n
1
-m

o
n
th

2
-m

o
n
th

3
-m

o
n
th

6
-m

o
n
th

9
-m

o
n
th

1
2
-m

o
n
th

IV
12

.0
4

-1
.6

9
4.

57
10

.4
8

0.
46

6.
36

10
.1

3
0.

66
8.

81
5.

81
3.

53
7.

53
3.

72
3.

42
6.

08
3.

09
2.

86
5.

41
(

3.
10

)*
**

(-
0.

31
)

(
3.

43
)*

**
(

0.
10

)
(

3.
76

)*
**

(
0.

15
)

(
2.

67
)*

**
(

1.
57

)
(

1.
75

)*
(

1.
88

)*
(

1.
46

)
(

1.
59

)
[

2.
59

]*
*

[-
0.

29
]

[
2.

90
]*

**
[

0.
09

]
[

3.
31

]*
**

[
0.

13
]

[
2.

24
]*

*
[

0.
81

]
[

1.
62

]
[

0.
97

]
[

1.
28

]
[

0.
96

]
IS

11
.8

4
-0

.2
0

4.
48

10
.3

3
-2

.3
2

6.
66

10
.0

8
-1

.4
4

8.
94

5.
75

-4
.9

4
9.

32
3.

69
-4

.5
3

8.
00

3.
07

-3
.6

8
6.

91
(

3.
12

)*
**

(-
0.

04
)

(
3.

41
)*

**
(-

0.
51

)
(

3.
75

)*
**

(-
0.

31
)

(
2.

56
)*

*
(-

2.
36

)*
*

(
1.

73
)*

(-
3.

42
)*

**
(

1.
44

)
(-

3.
02

)*
**

[
2.

63
]*

**
[-

0.
04

]
[

2.
91

]*
**

[-
0.

49
]

[
3.

34
]*

**
[-

0.
29

]
[

2.
25

]*
*

[-
1.

13
]

[
1.

63
]

[-
1.

35
]

[
1.

28
]

[-
1.

34
]

d
-p

11
.4

3
5.

59
5.

47
10

.0
4

6.
15

8.
51

9.
69

6.
28

12
.0

7
5.

46
7.

51
14

.1
0

3.
32

8.
04

17
.5

3
2.

59
8.

30
22

.2
6

(
2.

97
)*

**
(

1.
10

)
(

3.
25

)*
**

(
1.

38
)

(
3.

63
)*

**
(

1.
47

)
(

2.
85

)*
**

(
2.

16
)*

*
(

2.
04

)*
*

(
2.

68
)*

**
(

2.
12

)*
*

(
3.

16
)*

**
[

2.
53

]*
*

[
1.

12
]

[
2.

83
]*

**
[

1.
26

]
[

3.
25

]*
**

[
1.

29
]

[
2.

19
]*

*
[

1.
62

]
[

1.
51

]
[

1.
83

]*
[

1.
11

]
[

1.
96

]*
d
-e

11
.9

0
-0

.3
4

4.
48

10
.4

4
0.

66
6.

37
10

.0
2

1.
34

8.
92

5.
76

2.
74

6.
78

3.
66

2.
79

5.
22

2.
96

2.
87

5.
40

(
3.

18
)*

**
(-

0.
06

)
(

3.
53

)*
**

(
0.

14
)

(
3.

88
)*

**
(

0.
33

)
(

2.
88

)*
**

(
0.

84
)

(
1.

85
)*

(
1.

09
)

(
1.

55
)

(
1.

62
)

[
2.

61
]*

**
[-

0.
06

]
[

2.
92

]*
**

[
0.

13
]

[
3.

32
]*

**
[

0.
28

]
[

2.
26

]*
*

[
0.

66
]

[
1.

61
]

[
0.

76
]

[
1.

23
]

[
0.

84
]

T
E
R
M

12
.1

9
2.

87
4.

74
10

.8
5

2.
80

6.
79

10
.5

3
2.

92
9.

48
6.

47
3.

08
7.

08
4.

44
3.

61
6.

35
3.

85
4.

64
9.

09
(

3.
20

)*
**

(
0.

83
)

(
3.

62
)*

**
(

0.
94

)
(

4.
16

)*
**

(
1.

04
)

(
3.

06
)*

**
(

1.
13

)
(

2.
15

)*
*

(
1.

36
)

(
2.

07
)*

*
(

1.
89

)*
[

2.
66

]*
**

[
0.

81
]

[
2.

99
]*

**
[

0.
78

]
[

3.
42

]*
**

[
0.

80
]

[
2.

54
]*

*
[

0.
84

]
[

1.
95

]*
[

1.
00

]
[

1.
61

]
[

1.
32

]
D
E
F

11
.7

7
-2

.1
7

4.
63

10
.4

7
-1

.3
9

6.
46

10
.1

9
-0

.2
2

8.
77

6.
22

1.
95

6.
24

4.
15

2.
61

5.
04

3.
49

3.
26

6.
11

(
3.

16
)*

**
(-

0.
37

)
(

3.
50

)*
**

(-
0.

27
)

(
4.

05
)*

**
(-

0.
05

)
(

2.
99

)*
**

(
0.

53
)

(
2.

03
)*

*
(

0.
90

)
(

1.
82

)*
(

1.
64

)
[

2.
62

]*
**

[-
0.

38
]

[
2.

94
]*

**
[-

0.
25

]
[

3.
39

]*
**

[-
0.

04
]

[
2.

51
]*

*
[

0.
40

]
[

1.
88

]*
[

0.
61

]
[

1.
49

]
[

0.
86

]
R
R
E
L

12
.0

7
7.

35
6.

20
10

.7
4

7.
50

9.
57

10
.4

2
7.

61
13

.6
4

6.
32

7.
52

14
.1

9
4.

23
7.

42
15

.5
3

3.
51

6.
45

14
.7

9
(

3.
32

)*
**

(
1.

73
)*

(
3.

69
)*

**
(

2.
03

)*
*

(
4.

14
)*

**
(

2.
19

)*
*

(
2.

90
)*

**
(

2.
09

)*
*

(
1.

85
)*

(
1.

83
)*

(
1.

56
)

(
1.

69
)*

[
2.

67
]*

**
[

1.
87

]*
[

3.
01

]*
**

[
1.

93
]*

[
3.

47
]*

**
[

1.
92

]*
[

2.
53

]*
*

[
1.

78
]*

[
1.

90
]*

[
1.

69
]*

[
1.

49
]

[
1.

49
]

S
V
A
R

11
.8

4
-8

.8
6

6.
98

10
.5

1
-5

.1
5

7.
87

10
.1

8
-4

.9
3

10
.8

2
6.

13
-0

.0
4

5.
67

4.
06

1.
49

4.
04

3.
37

1.
61

3.
86

(
3.

40
)*

**
(-

1.
88

)*
(

3.
68

)*
**

(-
1.

88
)*

(
4.

22
)*

**
(-

2.
13

)*
*

(
2.

90
)*

**
(-

0.
02

)
(

1.
89

)*
(

1.
12

)
(

1.
59

)
(

1.
24

)
[

2.
63

]*
**

[-
1.

24
]

[
2.

96
]*

**
[-

0.
98

]
[

3.
40

]*
**

[-
1.

00
]

[
2.

47
]*

*
[-

0.
01

]
[

1.
83

]*
[

0.
42

]
[

1.
43

]
[

0.
56

]
T
A
IL

11
.6

8
1.

76
4.

58
10

.6
9

-1
.6

1
6.

50
10

.3
7

-1
.6

2
8.

99
6.

29
-1

.2
9

5.
92

3.
91

1.
10

3.
82

3.
08

2.
19

4.
46

(
3.

19
)*

**
(

0.
46

)
(

3.
63

)*
**

(-
0.

59
)

(
4.

09
)*

**
(-

0.
65

)
(

2.
84

)*
**

(-
0.

53
)

(
1.

89
)*

(
0.

41
)

(
1.

61
)

(
0.

85
)

[
2.

60
]*

**
[

0.
40

]
[

3.
01

]*
**

[-
0.

43
]

[
3.

51
]*

**
[-

0.
48

]
[

2.
67

]*
**

[-
0.

45
]

[
1.

90
]*

[
0.

42
]

[
1.

41
]

[
0.

90
]

T
h

is
ta

b
le

re
p

or
ts

th
e

in
-s

am
p

le
re

su
lt

s
fo

r
b

iv
ar

ia
te

p
re

d
ic

ti
ve

re
gr

es
si

on
s

of
th

e
C

R
S

P
va

lu
e-

w
ei

gh
te

d
in

d
ex

ex
ce

ss
re

tu
rn

on
th

e
fo

rw
ar

d
va

ri
an

ce
fa

ct
or

(F
V

)
an

d
ea

ch
of

th
e

ot
h
er

p
re

d
ic

to
rs

u
se

d
in

th
e

st
u

d
y.

T
h

e
re

m
ai

n
d

er
of

th
e

fo
re

ca
st

in
g

va
ri

ab
le

s
ar

e
th

e
im

p
li

ed
va

ri
an

ce
(I

V
),

im
p

li
ed

sk
ew

n
es

s
(I

S
),

d
iv

id
en

d
-p

ri
ce

ra
ti

o
(d

-p
),

d
iv

id
en

d
p

ay
ou

t
ra

ti
o

(d
-e

),
y
ie

ld
te

rm
sp

re
ad

(T
E

R
M

),
d

ef
au

lt
sp

re
ad

(D
E

F
),

re
la

ti
ve

sh
or

t-
te

rm
ri

sk
-f

re
e

ra
te

(R
R

E
L

),
st

o
ck

m
ar

ke
t

va
ri

an
ce

(S
V

A
R

)
an

d
ta

il
ri

sk
(T

A
IL

).
T

h
e

sa
m

p
le

p
er

io
d

is
19

96
:0

1-
20

15
:0

8.
R

ep
or

te
d

co
effi

ci
en

ts
in

d
ic

at
e

th
e

p
er

ce
n
ta

ge
an

n
u

al
iz

ed
ex

ce
ss

re
tu

rn
re

su
lt

in
g

fr
om

a
on

e
st

an
d

ar
d

d
ev

ia
ti

on
in

cr
ea

se
in

ea
ch

p
re

d
ic

to
r

va
ri

ab
le

.
N

ew
ey

an
d

W
es

t
(1

98
7)

an
d

H
o
d

ri
ck

(1
99

2)
t-

st
at

is
ti

cs
w

it
h

la
g

le
n

gt
h

eq
u

al
to

th
e

fo
re

ca
st

in
g

h
or

iz
on

ar
e

re
p

or
te

d
in

p
ar

en
th

es
es

an
d

sq
u

ar
e

b
ra

ck
et

s
re

sp
ec

ti
ve

ly
.

**
*,

**
an

d
*

d
en

ot
e

si
gn

ifi
ca

n
ce

at
th

e
1%

,
5%

an
d

10
%

le
ve

ls
.

33



T
ab

le
5:

F
or

w
ar

d
sk

ew
n

es
s

p
re

d
ic

ta
b

il
it

y
co

n
tr

ol
li

n
g

fo
r

ot
h

er
p

re
d

ic
to

rs

F
S

Z
R

2
(%

)
F
S

Z
R

2
(%

)
F
S

Z
R

2
(%

)
F
S

Z
R

2
(%

)
F
S

Z
R

2
(%

)
F
S

Z
R

2
(%

)
H
o
ri
zo

n
1
-m

o
n
th

2
-m

o
n
th

3
-m

o
n
th

6
-m

o
n
th

9
-m

o
n
th

1
2
-m

o
n
th

IV
12

.5
5

-0
.0

1
5.

02
12

.9
9

1.
95

9.
81

13
.4

0
2.

12
15

.3
7

8.
62

4.
37

13
.6

8
5.

85
3.

98
10

.5
3

4.
49

3.
29

8.
40

(
3.

21
)*

**
(-

0.
00

)
(

4.
94

)*
**

(
0.

65
)

(
5.

68
)*

**
(

0.
87

)
(

6.
87

)*
**

(
2.

90
)*

**
(

4.
23

)*
**

(
2.

23
)*

*
(

3.
81

)*
**

(
1.

78
)*

[
2.

22
]*

*
[-

0.
00

]
[

2.
88

]*
**

[
0.

39
]

[
3.

53
]*

**
[

0.
44

]
[

3.
48

]*
**

[
1.

02
]

[
3.

06
]*

**
[

1.
15

]
[

2.
59

]*
*

[
1.

13
]

IS
12

.6
6

-1
.9

4
5.

14
13

.1
5

-3
.9

4
10

.4
7

13
.5

1
-3

.0
5

15
.7

7
8.

82
-5

.9
0

16
.0

4
6.

02
-5

.1
8

12
.9

0
4.

63
-4

.1
9

10
.2

6
(

3.
13

)*
**

(-
0.

54
)

(
4.

83
)*

**
(-

1.
32

)
(

5.
46

)*
**

(-
1.

25
)

(
5.

72
)*

**
(-

5.
54

)*
**

(
4.

38
)*

**
(-

4.
23

)*
**

(
3.

93
)*

**
(-

3.
21

)*
**

[
2.

23
]*

*
[-

0.
35

]
[

2.
89

]*
**

[-
0.

83
]

[
3.

55
]*

**
[-

0.
62

]
[

3.
58

]*
**

[-
1.

37
]

[
3.

16
]*

**
[-

1.
56

]
[

2.
67

]*
**

[-
1.

55
]

d
-p

11
.7

5
4.

27
5.

58
12

.0
6

4.
70

10
.8

1
12

.4
5

4.
74

16
.8

2
7.

21
6.

64
17

.2
0

4.
28

7.
53

18
.9

8
2.

86
7.

99
22

.6
0

(
2.

64
)*

**
(

0.
84

)
(

4.
06

)*
**

(
1.

14
)

(
4.

56
)*

**
(

1.
28

)
(

5.
83

)*
**

(
2.

07
)*

*
(

3.
61

)*
**

(
2.

65
)*

**
(

4.
31

)*
**

(
3.

11
)*

**
[

1.
98

]*
*

[
0.

82
]

[
2.

61
]*

**
[

0.
94

]
[

3.
17

]*
**

[
0.

95
]

[
2.

66
]*

**
[

1.
39

]
[

2.
10

]*
*

[
1.

67
]*

[
1.

62
]

[
1.

86
]*

d
-e

12
.5

6
-0

.1
4

5.
02

12
.8

6
0.

63
9.

61
13

.2
0

1.
23

15
.1

2
8.

18
2.

62
11

.8
3

5.
41

2.
69

8.
65

4.
07

2.
82

7.
56

(
3.

15
)*

**
(-

0.
03

)
(

4.
79

)*
**

(
0.

17
)

(
5.

67
)*

**
(

0.
38

)
(

6.
80

)*
**

(
0.

95
)

(
3.

22
)*

**
(

1.
13

)
(

2.
89

)*
**

(
1.

62
)

[
2.

20
]*

*
[-

0.
03

]
[

2.
86

]*
**

[
0.

13
]

[
3.

44
]*

**
[

0.
26

]
[

3.
10

]*
**

[
0.

63
]

[
2.

64
]*

**
[

0.
72

]
[

2.
23

]*
*

[
0.

82
]

T
E
R
M

12
.5

2
1.

18
5.

06
12

.9
1

1.
29

9.
68

13
.3

1
1.

44
15

.1
6

8.
42

2.
18

11
.5

2
5.

64
2.

99
9.

03
4.

29
4.

13
10

.1
4

(
3.

16
)*

**
(

0.
34

)
(

4.
69

)*
**

(
0.

42
)

(
5.

61
)*

**
(

0.
52

)
(

5.
82

)*
**

(
0.

84
)

(
3.

25
)*

**
(

1.
17

)
(

3.
33

)*
**

(
1.

70
)*

[
2.

20
]*

*
[

0.
34

]
[

2.
87

]*
**

[
0.

37
]

[
3.

51
]*

**
[

0.
41

]
[

3.
34

]*
**

[
0.

60
]

[
2.

92
]*

**
[

0.
84

]
[

2.
45

]*
*

[
1.

19
]

D
E
F

12
.4

8
-2

.2
7

5.
18

12
.8

9
-1

.4
2

9.
70

13
.3

3
-0

.2
4

14
.9

9
8.

53
1.

95
11

.3
8

5.
79

2.
61

8.
57

4.
47

3.
24

8.
30

(
3.

16
)*

**
(-

0.
42

)
(

4.
51

)*
**

(-
0.

35
)

(
5.

63
)*

**
(-

0.
07

)
(

6.
31

)*
**

(
0.

59
)

(
3.

56
)*

**
(

0.
94

)
(

3.
71

)*
**

(
1.

65
)*

[
2.

20
]*

*
[-

0.
40

]
[

2.
86

]*
**

[-
0.

25
]

[
3.

51
]*

**
[-

0.
04

]
[

3.
43

]*
**

[
0.

40
]

[
3.

03
]*

**
[

0.
61

]
[

2.
58

]*
*

[
0.

85
]

R
R
E
L

12
.3

8
6.

67
6.

43
12

.7
6

6.
86

12
.2

8
13

.1
6

6.
97

19
.0

8
8.

28
7.

14
18

.4
8

5.
51

7.
16

18
.2

5
4.

21
6.

25
16

.3
0

(
3.

27
)*

**
(

1.
60

)
(

4.
52

)*
**

(
1.

97
)*

(
5.

67
)*

**
(

2.
16

)*
*

(
4.

30
)*

**
(

1.
98

)*
*

(
2.

43
)*

*
(

1.
75

)*
(

2.
23

)*
*

(
1.

62
)

[
2.

19
]*

*
[

1.
72

]*
[

2.
84

]*
**

[
1.

77
]*

[
3.

47
]*

**
[

1.
77

]*
[

3.
30

]*
**

[
1.

70
]*

[
2.

86
]*

**
[

1.
63

]
[

2.
42

]*
*

[
1.

45
]

S
V
A
R

11
.0

1
-6

.1
1

6.
13

12
.4

1
-2

.0
7

9.
82

12
.9

0
-1

.7
4

15
.2

3
9.

03
2.

18
11

.4
8

6.
50

3.
10

9.
05

5.
11

2.
86

7.
51

(
2.

69
)*

**
(-

1.
25

)
(

4.
04

)*
**

(-
0.

78
)

(
5.

01
)*

**
(-

1.
03

)
(

5.
54

)*
**

(
1.

27
)

(
3.

96
)*

**
(

1.
87

)*
(

3.
88

)*
**

(
1.

80
)*

[
2.

02
]*

*
[-

0.
87

]
[

2.
69

]*
**

[-
0.

38
]

[
3.

39
]*

**
[-

0.
35

]
[

3.
88

]*
**

[
0.

48
]

[
3.

50
]*

**
[

0.
87

]
[

2.
95

]*
**

[
0.

98
]

T
A
IL

12
.4

2
2.

24
5.

18
13

.0
0

-1
.2

4
9.

67
13

.4
1

-1
.2

9
15

.1
3

8.
54

-1
.0

5
10

.9
7

5.
63

1.
21

7.
41

4.
23

2.
30

6.
84

(
3.

16
)*

**
(

0.
61

)
(

4.
83

)*
**

(-
0.

51
)

(
5.

75
)*

**
(-

0.
64

)
(

5.
83

)*
**

(-
0.

47
)

(
3.

03
)*

**
(

0.
47

)
(

2.
73

)*
**

(
0.

92
)

[
2.

19
]*

*
[

0.
51

]
[

2.
87

]*
**

[-
0.

33
]

[
3.

52
]*

**
[-

0.
38

]
[

3.
46

]*
**

[-
0.

36
]

[
3.

02
]*

**
[

0.
45

]
[

2.
55

]*
*

[
0.

91
]

T
h

is
ta

b
le

re
p

or
ts

th
e

in
-s

am
p

le
re

su
lt

s
fo

r
b

iv
ar

ia
te

p
re

d
ic

ti
ve

re
gr

es
si

on
s

of
th

e
C

R
S

P
va

lu
e-

w
ei

gh
te

d
in

d
ex

ex
ce

ss
re

tu
rn

on
th

e
fo

rw
ar

d
sk

ew
n

es
s

fa
ct

or
(F

S
)

an
d

ea
ch

of
th

e
ot

h
er

p
re

d
ic

to
rs

u
se

d
in

th
e

st
u

d
y.

T
h

e
re

m
ai

n
d

er
of

th
e

fo
re

ca
st

in
g

va
ri

ab
le

s
ar

e
th

e
im

p
li

ed
va

ri
an

ce
(I

V
),

im
p

li
ed

sk
ew

n
es

s
(I

S
),

d
iv

id
en

d
-p

ri
ce

ra
ti

o
(d

-p
),

d
iv

id
en

d
p

ay
ou

t
ra

ti
o

(d
-e

),
y
ie

ld
te

rm
sp

re
ad

(T
E

R
M

),
d

ef
au

lt
sp

re
ad

(D
E

F
),

re
la

ti
ve

sh
or

t-
te

rm
ri

sk
-f

re
e

ra
te

(R
R

E
L

),
st

o
ck

m
ar

ke
t

va
ri

an
ce

(S
V

A
R

)
an

d
ta

il
ri

sk
(T

A
IL

).
T

h
e

sa
m

p
le

p
er

io
d

is
19

96
:0

1-
20

15
:0

8.
R

ep
or

te
d

co
effi

ci
en

ts
in

d
ic

at
e

th
e

p
er

ce
n
ta

ge
an

n
u

al
iz

ed
ex

ce
ss

re
tu

rn
re

su
lt

in
g

fr
om

a
on

e
st

an
d

ar
d

d
ev

ia
ti

on
in

cr
ea

se
in

ea
ch

p
re

d
ic

to
r

va
ri

ab
le

.
N

ew
ey

an
d

W
es

t
(1

98
7)

an
d

H
o
d

ri
ck

(1
99

2)
t-

st
at

is
ti

cs
w

it
h

la
g

le
n

gt
h

eq
u

al
to

th
e

fo
re

ca
st

in
g

h
or

iz
on

ar
e

re
p

or
te

d
in

p
ar

en
th

es
es

an
d

sq
u

ar
e

b
ra

ck
et

s
re

sp
ec

ti
ve

ly
.

**
*,

**
an

d
*

d
en

ot
e

si
gn

ifi
ca

n
ce

at
th

e
1%

,
5%

an
d

10
%

le
ve

ls
.

34



Table 6: Out-of-sample predictability

Horizon 1-month 2-month 3-month 6-month 9-month 12-month
Panel A: Forward Moments

FV 1.93 1.93 2.30 0.45 -1.00 -4.05
( 3.70)** ( 3.66)** ( 4.34)** ( 0.81)* (-1.69) (-6.46)
[ 5.64]** [ 7.28]** [ 9.84]** [ 6.17]** [ 3.40]** [ 0.25]

FS 0.72 3.06 4.08 3.13 3.52 -0.02
( 1.37)* ( 5.87)** ( 7.83)** ( 5.75)** ( 6.28)** (-0.03)
[ 2.42]** [ 5.87]** [ 8.71]** [ 5.97]** [ 5.89]** [ 2.05]*

FV & FS 4.53 3.66 5.28 7.12 1.51 -3.07
( 8.93)** ( 7.06)** (10.25)** (13.65)** ( 2.64)** (-4.95)
[ 7.70]** [ 7.51]** [10.84]** [12.68]** [ 5.22]** [ 0.99]

(FV & FS) vs FV 2.61 1.73 2.98 6.67 2.51 0.98
( 5.13)** ( 3.34)** ( 5.78)** (12.79)** ( 4.38)** ( 1.58)**
[ 3.12]** [ 2.61]** [ 4.58]** [ 7.80]** [ 2.65]** [ 1.14]

Panel B: Alternative Predictors
IV -3.83 -7.33 -12.74 -1.61 -1.79 -3.47

(-6.93) (-12.70) (-20.80) (-2.82) (-3.03) (-5.57)
[-1.38] [-2.32] [-5.07] [ 1.85]* [-0.27] [-1.87]

IS -5.62 -14.38 -23.79 0.80 2.21 -0.08
(-10.00) (-23.39) (-35.36) ( 1.43)* ( 3.88)** (-0.13)
[-2.57] [-1.87] [-7.10] [ 8.97]** [ 5.25]** [ 2.57]**

d-p -0.33 -1.40 -2.64 -0.74 2.46 5.06
(-0.62) (-2.58) (-4.73) (-1.31) ( 4.33)** ( 8.85)**
[ 1.43] [ 1.65]* [ 1.95]* [ 6.94]** [15.90]** [26.67]**

d-e -7.23 -19.34 -34.49 -80.88 -111.43 -111.18
(-12.68) (-30.14) (-47.19) (-79.59) (-90.65) (-87.39)
[-0.82] [-5.27] [-10.22] [-21.14] [-22.52] [-13.99]

TERM -2.50 -6.45 -11.64 -31.13 -68.70 -78.96
(-4.58) (-11.27) (-19.18) (-42.26) (-70.04) (-73.24)
[-0.77] [-3.03] [-5.51] [-10.44] [-16.52] [-14.09]

DEF -4.53 -10.53 -23.53 -64.34 -66.00 -34.73
(-8.14) (-17.72) (-35.05) (-69.69) (-68.38) (-42.79)

[ 2.83]** [ 4.47]** [ 0.71] [-9.80] [-13.29] [-11.87]
RREL -0.55 -1.33 -3.39 -13.10 -43.96 -83.24

(-1.03) (-2.44) (-6.04) (-20.62) (-52.52) (-75.41)
[ 0.45] [ 0.88] [ 0.76] [-1.75] [-9.11] [-16.87]

SVAR -4.96 -8.58 -12.09 -6.99 -6.34 -7.67
(-8.88) (-14.70) (-19.84) (-11.63) (-10.25) (-11.82)

[ 2.38]** [-3.07] [-6.41] [-4.17] [-4.16] [-4.43]
TAIL -1.46 -3.01 -5.44 -9.58 -10.40 -19.22

(-2.71) (-5.43) (-9.50) (-15.57) (-16.20) (-26.77)
[-0.47] [-2.05] [-3.50] [-5.57] [-3.90] [-7.34]

This table reports the results of out-of-sample predictability for the CRSP value-weighted index
excess return. The total sample period is 1996:01-2015:08 and the forecasting period begins in
2000:01. The forecasting variables are the two forward moments factors (FV and FS), implied
variance (IV), implied skewness (IS), dividend-price ratio (d-p), dividend payout ratio (d-e),
yield term spread (TERM), default spread (DEF), relative short-term risk-free rate (RREL),
stock market variance (SVAR) and tail risk (TAIL). Panel A shows the results for the forward
moments factors and Panel B shows the results for the alternative predictors. The last part
of Panel A compares a model with both forward variance and forward skewness factors to a
model with just the forward variance factor. All other models are compared to the historical
average model. For each forecasting model, the first row reports the out-of-sample coefficient of
determination, the second row (in parentheses) reports the MSE F-statistic of McCracken (2007)
and the third row (in square brackets) reports the encompassing ENC-NEW test of Clark and
McCracken (2001). ** and * denote significance at the 1%, 5% and 10% levels.
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Table 7: Market-timing strategy

Mean (%) St. Dev. (%) Sharpe ∆CER (%)
HAV 1.25 12.16 0.10
FV 3.94 12.12 0.32 2.70
FS 2.83 13.67 0.21 0.99
FV & FS 4.94 12.18 0.41 3.68
IV -1.14 14.77 -0.08 -3.45
IS -0.94 13.25 -0.07 -2.61
d-p 7.69 17.92 0.43 3.84
d-e 3.56 10.68 0.33 2.81
TERM 1.37 11.67 0.12 0.30
DEF 1.49 11.17 0.13 0.59
RREL 3.91 11.33 0.35 2.95
SVAR 1.27 15.35 0.08 -1.30
TAIL 0.50 11.71 0.04 -0.59

This table reports the results of a market-timing strategy based on
the 1-month ahead out-of-sample predictability for the CRSP value-
weighted index excess return. The total sample period is 1996:01-
2015:08 and the forecasting period begins in 2000:01. The forecasting
variables are the two forward moments factors (FV and FS), implied
variance (IV), implied skewness (IS), dividend-price ratio (d-p), div-
idend payout ratio (d-e), yield term spread (TERM), default spread
(DEF), relative short-term risk-free rate (RREL), stock market vari-
ance (SVAR) and tail risk (TAIL). Mean denotes the average return,
St. Dev. denotes the standard deviation of returns, Sharpe stands for
the Sharpe ratio and ∆CER is the certainty equivalent return in excess
of the historical average (HAV) strategy. All measures of performance
are in annualized terms.
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Table 8: Excess variance predictability

Horizon 1-month 2-month 3-month 6-month 9-month 12-month
Panel A: In-sample predictability

FV 1.20 1.08 1.00 0.73 0.50 0.35
( 2.48)** ( 3.09)*** ( 3.26)*** ( 2.36)** ( 1.62) ( 1.21)
[ 2.15]** [ 3.35]*** [ 4.24]*** [ 5.22]*** [ 4.72]*** [ 3.27]***

R2 (%) 8.39 6.83 6.07 3.75 1.94 1.01

FS 0.93 0.80 0.82 0.76 0.58 0.50
( 1.99)** ( 2.02)** ( 2.19)** ( 2.41)** ( 1.76)* ( 1.58)
[ 1.77]* [ 2.01]** [ 2.84]*** [ 5.85]*** [ 6.46]*** [ 6.35]***

R2 (%) 5.00 3.77 4.09 4.06 2.62 2.14
Panel B: Out-of-sample predictability

FV 5.55 6.18 6.12 3.25 0.98 -0.18
(11.04)** (12.26)** (11.99)** ( 5.98)** ( 1.71)** (-0.30)
[10.55]** [10.58]** [10.25]** [ 5.92]** [ 2.86]** [ 1.25]

FS 3.12 4.74 5.85 3.19 2.52 1.64
( 6.05)** ( 9.26)** (11.44)** ( 5.86)** ( 4.45)** ( 2.77)**
[ 5.06]** [ 6.37]** [ 7.79]** [ 4.60]** [ 3.50]** [ 2.18]*

This table reports the results for univariate predictive regressions of the excess vari-
ance on the forward variance factor (FV) and forward skewness factor (FS). Panel A
shows in-sample predictability results and Panel B shows out-of-sample predictability
results. The sample period is 1996:01-2015:08. In Panel A, reported coefficients indi-
cate the percentage annualized excess return resulting from a one standard deviation
increase in each predictor variable. Newey and West (1987) and Hodrick (1992) t-
statistics with lag length equal to the forecasting horizon are reported in parentheses
and square brackets respectively. In Panel B, the first row reports the out-of-sample co-
efficient of determination, the second row (in parentheses) reports the MSE F-statistic
of McCracken (2007) and the third row (in square brackets) reports the encompassing
ENC-NEW test of Clark and McCracken (2001). ** and * denote significance at the
1%, 5% and 10% levels.
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